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Nucleation of liquid precipitates in semi-insulating GaAs is accompanied by de-
viatoric stresses resulting from the liquid/solid misfit. A competition of surface tension
and stress deviators at the interface determines the nucleation barrier.

The evolution of liquid precipitates in semi-insulating GaAs is due to diffusional
processes in the vicinity of the droplet. The diffusion flux results from a competition of
chemical and mechanical driving forces.

The size distribution of the precipitates is determined by a Becker-Döring system.
The study of its properties in the presence of deviatoric stresses is the subject of this
study. The main tasks of this study are: (i) We propose a new Becker/Döring model
that takes thermomechanical coupling into account. (ii) We compare the current model
with already existing models from the literature. Irrespective of the incorporation of
mechanical stresses, the various models differ due to different environments where the
evolution of precipitates takes place. (iii) We determine the structure of equilibrium
solutions according to the Becker/Döring model, and we compare these solutions with
those that result from equilibrium thermodynamics.

KEY WORDS: nucleation, kinetics of phase transitions, surface stress, GaAs,
elasticity.

1. INTRODUCTION

The appearance of a new phase in a given parent phase is an interesting problem
since a long time. Its description starts with the calculation of the nucleation
rate for liquid droplets in vapour in a stationary process by Becker and Döring in
1935.(3) They established the so called Becker/Döring process, whereupon droplets
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shrink or grow exclusively by evaporation and condensation of single molecules
or atoms.

The modern version of the resulting model equations, that we will call the
Becker/Döring system has first been formulated by J. I. Frenkel in 1939,(14) see
also his textbook.(15) A modern monograph on the subject, containing many ap-
plications was written by D. Kashchiev.(18) The mathematical investigations on
the dynamics of the Becker/Döring system rely on J. Burton’s reformulation in
1977,(4) who, however, ignores Frenkel’s studies.

Our study on the Becker/Döring model was motivated by a new important
industrial application for nucleation and evolution. These phenomena concern
the appearance of liquid droplets in crystalline semi-insulating Gallium Arsenide
(GaAs) during necessary heat treatments at elevated temperature of GaAs wafer.
Besides the classical phenomenon of surface tension, there arise deviatoric bulk
stresses due to the different mass densities of liquid and solid GaAs. Moreover,
semi-insulating GaAs possesses a complex chemical constitution, and for a proper
description at least seven constituents on three crystal sublattices of the solid phase
must be taken into account.

The thermodynamics of semi-insulating GaAs has been formulated and ex-
ploited in detail by the authors in,(7) where in particular non-standard phase dia-
grams are calculated that take care of the effects of surface tension and deviatoric
bulk stresses.

The most important result of(7) for the current study concerns the determi-
nation of the available free energy of a liquid/solid system containing a single
droplet, see Fig. 6, as a function of a single variable, which may be, for example,
the size of the droplet. This allows a direct application of the simple version of the
Becker/Döring model, which likewise considers a single variable to describe the
state of a droplet.

We have organised the study as follows:
In Chapter 2 we introduce the Becker/Döring model and we discuss in de-

tail some aspects of its history. This is necessary, because of the occurrence of
some misinterpretations of Becker and Döring’s paper from 1935 in the current
literature.

Chapter 3 formulates the thermodynamics of the Becker/Döring model. The
main issue is the construction of a Lyapunov function to the Becker/Döring model
that is based on Clausius version of the second law of thermodynamics. We identify
this function as the available free energy for the system at hand. Its calculation
starts from a single-droplet system and assumes that the many-droplet system has a
free energy, that is a sum of single droplet free energies plus the entropy of mixing.
This representation is motivated by thermodynamics of chemical reactions and the
mixing term takes care for the entropic interaction between the droplets. In 1939
this model was introduced and evaluated for equilibrium by J.I. Frenkel.(14,15) The
mathematical literature uses a different Lyapunov function, that was proposed by
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J. M. Ball, J. Carr, O. Penrose in,(1) which does not rely on thermodynamics but is
read off from their form of the Becker-Döring system.

Finally, in Chapter 4 we apply the general framework to two explicit sys-
tems: Liquid droplets in semi-insulating GaAs, which has stimulated the current
study, and for a comparison and illustration a liquid/vapour system containing
a single substance. The latter system is the classical system, that was already
treated by Becker and Döring in 1935. The most important difference between
the two systems regards their possible equilibria. In fact GaAs system is able to
reach an equilibrium distribution of liquid droplets in the solid phase, whereas
the liquid/vapour system is driven to a state, where exclusively the liquid phase
is present. However, during its passage to this final state, interesting phenom-
ena appear. Among these are metastability of the system(1,27) and the transition
of the Becker/Döring model to the Lifshitz/Slyosov/Wagner (LSW) model(21,38)

in.(25,26,28)

2. FORMULATION AND DISCUSSION OF THE GENERAL

BECKER/DÖRING MODEL

2.1. Formulation of the Model

Relying on preliminary studies by Volmer and Weber,(37) and Farkas,(13)

Becker and Döring,(3) proposed in 1935 a simple process to model precipitation of
a new phase in a given surrounding. Examples are the formation of liquid droplets
in a gas, of solid precipitates in a liquid, and the appearance of liquid droplets in
a crystalline solid. In the following the precipitates will be called droplets and the
single molecules or atoms are often called monomers. We consider exclusively
spherical droplets and describe their size by their number of molecules, α, or by
their radii, rα .

According to the proposed model, which has become known as the
Bekker/Döring (BD) model, a droplet with α molecules may grow by incorpora-
tion of a monomer from the surrounding and it may shrink by emitting a monomer
into the surrounding. Other processes, like the appearance of a droplet with α + β

molecules by the reaction of a droplet with α > 1 molecules with another droplet
with β > 1 molecules, are not considered within the BD model, see Fig. 1.

We call the two BD reactions evaporisation, E, and condensation, C, and we
denote their corresponding transition rates by �E

α and �C
α . The transition rates give

the number of reactions per second, and they must be determined by constitutive
laws, whose derivation is among the objectives of this study.

2.2. The Evolution Equations of the Becker/Döring model

We consider a distribution of droplets with α ∈ {2, . . . , ν} atoms or
molecules, and we introduce a set of functions Z (t, α) ≥ 0, which give at any
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time t ≥ 0 the number of droplets with α atoms or molecules. The number of
monomers is included here, and it is given by Z (t, 1). The assumption that no
droplets with more than ν atoms appear in the system is rather artificial and our
primary objective is in fact the limiting case ν → ∞. However, we will meet
problems concerning the convergence of infinite sums and a numerical treat-
ment, see the interesting studies of J. Carr, D.-B. Duncan, C. H. Walshaw and
A. R. Soheili,(5,12) requires a truncation of the infinite hierarchy. For these reasons
we will also study the case of finite ν. To this end we need consistent conditions to
study a finite system which preserves the properties of the infinite system without
removing droplets. Consequences of the introduction of a largest droplet with ν

atoms or molecules and the limiting case ν → ∞ will be discussed in Sec. 4.1.
If ν is finite, we use the conditions

�C
ν = 0 and Z (t, ν + 1) = 0 (1)

to terminate the system of evolution equations, which we introduce next.
The evolution of Z (t, α) is determined by a system of ordinary differential

equations, that we call nowadays the BD system. It reads

∂ Z (t, α)

∂t
= �C

α−1 Z (t, α − 1) − �E
α Z (t, α) − �C

α Z (t, α) + �E
α+1 Z (t, α + 1)

for α ∈ {2, . . . , ν}. (2)

The right hand side of (2) represents the four possible contributions that may lead
to a change of the number of droplets with α molecules.

According to Becker/Döring we introduce fluxes by

Jα = �C
α Z (t, α) − �E

α+1 Z (t, α + 1), so that
∂ Z (t, α)

∂t
= Jα−1 − Jα

for α ∈ {2, . . . , ν}. (3)

Note that according to (1) we have additionally Jν = 0.
The evolution law for the number of monomers, i.e. of Z (t, 1), depends on

the chosen experimental device. For example, Becker and Döring’s experimental
device contained liquid droplets within vapour, and is adjusted so that a stationary
state is achieved. In this state the number of monomers becomes measurable, so
that no evolution law for Z (t, 1) is needed. Further details of the BD device will
be explained in the next section.

We are interested in another case, where the total number of molecules, N ,
of the considered system is kept constant. This gives rise to the side condition

ν∑
β=1

βZ (t, β) = N , which implies
∂ Z (t, 1)

∂t
+

ν∑
β=2

β
∂ Z (t, β)

∂t
= 0. (4)



Theory of Nucleation of Liquid Droplets in Solids 59

Fig. 1. The Becker/Döring process.

We eliminate the time derivatives under the sum by means of the other evolution
laws (3)2 to obtain the evolution law for Z (t, 1). There results

∂ Z (t, 1)

∂t
= −J1 −

ν−1∑
β=1

Jβ. (5)

The hierarchy of Eqs. (3)2 and (5) constitutes the BD system for a closed device.
The BD system must be supplemented (i) by information on the considered ex-
perimental device, and (ii) by constitutive laws for the transition rates in order to
end up with a closed system, that can be used to determine the functions Z (t, α).

The formulation of constitutive laws that are in accordance with the second
law of thermodynamics is a subtle problem, and it is one of the main objectives
of this study. We mention already here that many treatments of this subject in the
literature lead to a violation of the second law.

2.3. Historical Remarks

The first studies on homogeneous nucleation, where empirical results became
related to theoretical investigations date back to Volmer and Weber 1926,(37) Farkas
1927(13) and Volmer.(34) Volmer and Weber calculated the critical radius, rC, of
a single droplet according to the Gibbs/Thomson law,(16,33) and they determined
the nucleation barrier, i.e. the work W to create isothermally a critical droplet, as
W = σ/3(4πr2

C), where σ denotes the surface tension. The notion critical droplet
refers to the fact, that a single droplet with radius r < rC dissolves, whereas it
grows for r > rC. First attempts to calculate nucleation rates can be found in
refs. 13 and 34.

In 1935 Becker and Döring studied stationary nucleation processes. The
Fig. 2 shows a schematic sketch of their experimental device. The process runs at
constant outer pressure and constant temperature.

The outer pressure is adjusted so that droplets appear and grow within a
gaseous phase. Stationarity of the process is achieved as follows: If the droplets
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Fig. 2. Schematic sketch of the Becker/Döring device. Color online.

have reached a certain size, i.e. if they contain α = ν + 1 molecules, they will be
removed from the system and the same amount of matter will be supplied as single
molecules to the gas. Thus Z (t, α) = 0 for α ≥ ν + 1 is satisfied. According to
Becker and Döring, this procedure leads to constant values (i) of the total number
of molecules in the device, (ii) of all functions Z (t, α) for α ∈ {1, 2, . . . , ν}, (iii)
of the total volume of the device. Furthermore (iv)

J1 = J2 = · · · = Jν≡J, (6)

is satisfied, where the common value J of the fluxes is called nucleation rate.
For the calculation of J , Becker and Döring had to determine the constitutive

laws for the transition rates. To this end they considered a closed system containing
a single liquid droplet in contact with its vapour. In Sec. 2.4.4 we will show that
the transition rates cannot be calculated in this manner, because a contradiction
to the second law of thermodynamics will follow as a consequence. However, the
resulting nucleation rates fit quite well to experimental data.

The theory of stationary processes was upgraded in 1939 in Volmer’s
textbook.(35) We mention that in all these treatments the instationary system (2)
was never written down explicitly.

Although there is good agreement between Becker and Dörings modelling
and experimental data, their model gave reasons to critisims, because the BD model
ignores Brownian motion of small droplets in a gas. In other words: In the BD
model, the droplets are considered to be at rest, whereas one should expect, that in
particular small droplets have translational and rotational degrees of freedom, so
that they take part in the thermal motion. It was Kuhrt,(19,20) stimulated by Becker,
who has studied these phenomena for the first time in 1952. During 1960 –1970,
a polemic debate on the correct consideration of thermal motion of the droplets
started between various scientific groups, see for example refs. 22 and 32. We will
not enter into this discussion here, because later on we will mainly be interested in
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the evolution of liquid droplets in a solid matrix, where the phenomenon obviously
does not occur.

In 1939 Frenkel,(14) considered a closed device under constant outer pressure
and constant temperature, and he prescribed the total number of molecules, N ,
and the size ν of the largest droplets in the system, see also ref. 15. For this system
Frenkel developed at first the thermodynamic theory. In particular he calculated the
available free energy for a many droplet system, where he uses information from
the single droplet system. In this study we use Frenkel’s free energy to determine
thermodynamic restrictions for the transition rates of the Becker-Döring system,
see Sec. 2.4 for details. Minimisation of the free energy leads to equilibrium values
Zeq(α) of the function Z (t, α). Hereafter, Frenkel wrote down for the first time
the instationary system (2), (4) and (1). In 1939 Frenkel,(14) and also Band,(2)

concluded from this system that equilibrium is reached for

J1 = J2 = · · · = Jν = 0, (7)

which implies

�C
α

�E
α+1

= Zeq(α + 1)

Zeq(α)
. (8)

This gives a first hint, that the ratio of the two transition rates is restricted. Thus
the constitutive laws for the transition rates must be correspondingly restricted.

In 1977 J. Burton,(4) reconsidered the BD process without any reference to
Frenkel. The importance of Burton’s contribution is due to the fact, that mathe-
matical studies on the BD model refers exclusively to Burton’s treatment of the
subject. However, Burton changed the interpretation of the variables of the origi-
nal model, that seems of minor importance at the very first moment, but a careful
study of this change reveals tremendous implications.

Recall that according to Becker and Döring, the central quantity Z (t, α) gives
at time t the number(!) of droplets with α molecules. However, in order to compare
their theoretical results with experimental data from Volmer and Flood,(36) Becker
and Döring introduced on page 729 of ref. 3 number densities and flux densities,
by dividing Z (t, α) and Jα by the total volume V = Vl + Vv of the liquid/vapour
system, without changing, however, the notation. Since V is a constant in a sta-
tionary process, which was exclusively considered by Becker and Döring, the
introduction of number densities and flux densities makes sense. However, in the
treatment of instationary processes it makes no sense at all. Here only the droplet
numbers, or the concentrations Z (t,α)

N0
where N0 is the total number of molecules

in the system, can be balanced in (3), because there is a drastic change of the total
volume with time in a dynamical process that runs at constant temperature and
constant external outer pressure. In fact the needed volume of a molecule in the
gas phase is enlarged by a factor of 1000 times with respect to the needed space
in the liquid phase.
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Burton probably overlooked these facts, and he proposed the system (3) and
(5) but with volume densities cα(t) instead of the numbers Z (t, α).

jα = γ C
α c(t, α) − γ E

α+1c(t, α + 1), so that
∂c(t, α)

∂t
= jα − jα−1

for α ∈ {2, . . . , ν}, (9)

and the evolution equation for c(t, 1) reads

∂c(t, 1)

∂t
= − j1 −

ν∑
β=1

jβ and
ν∑

β=1

βc(t, β) = ρ. (10)

O. Penrose et al. accepted this change of interpretation in the seminal math-
ematical studies on Burton’s version of the BD model, see refs. 1, 27–31, where
mainly the limiting case ν → ∞ is studied. Now we discuss a most important
consequence of this approach.

Burton and Penrose proposed a special form of the constitutive laws for the
transition rates, viz.

γ C
α = aαc1(t) and γ E

α = bα, (11)

where aα and bα should be independent of the droplet distributions. The ansatz
(11)1 results by a second misinterpretation of Becker and Döring’s reasoning:
Becker and Döring considered a single droplet with radius rα in a gaseous phase,
and they argued that every encounter of the incoming gas particles with the droplet
sphere leads to a condensation, see Fig. 1. According to the kinetic theory of gases,
the number of impinging particles per second on a surface 4πr2

α by gas particles
of mass m and at the temperature T is given by

�C
α = 4πr2

α

Z (t, 1)

VV(t)

√
kT

2πm
. (12)

Here k denotes Boltzmann’s constant and VV(t) is the volume of the gas phase,
which depends on time in an instationary process at constant temperature and
constant outer pressure. However, the ratio Z (t, 1)/VV(t) is independent of time,
because the thermal equation of state for an ideal gas reads in the current notation

p0 = Z (t, 1)

VV(t)
kT . (13)

We conclude that in fact �C
α depends on a volume density involving Z (t, 1),

however, it is related to the gas volume but not to the total volume, as it is
indicated in (11)1.

Although we criticise a BD model which relies on (9) and (10) but not
on (3) and (5), Ball, Carr and Penrose achieved several important mathematical
results, that can easily be transferred to the current BD system (3), (5) along their
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strategy. We mention here only Penrose’s study,(28) on the long time behaviour of
a many droplet system and its approach to the Lifshitz/Slyosov/Wagner (LSW)
theory(21,38) in a certain scaling limit. Penrose reasonings were rigorously proved
by B. Niethammer in 2002, see the habilitation(25) and its short version.(26)

2.4. Thermodynamics of the Becker/Döring System

We proceed with a study of the properties of the BD system (3) and (5). In
this chapter we investigate the approach of the droplet distribution to equilibrium
from a thermodynamic point of view.

Recall that within the framework of the BD system, equilibrium is defined by

J1 = J2 = · · · = Jν = 0, which implies
�C

α

�E
α+1

= Zeq(α + 1)

Zeq(α)
. (14)

At first sight, there are two possibilities to get information from (14)2:

1. For given transition rates one could calculate the equilibria Zeq(α) in terms
of Zeq(1), which hereafter might be determined by the conservation law
(4)1.

2. The other possibility results by assuming that the ratio Zeq(α + 1)/Zeq(α)
follows from another source. In this case, the ratio of transition rates is
fixed. For example, the evaporisation rate cannot be given independently
from the condensation rate.

Thermodynamics, however, rules out the first possibility, because it is capable to
determine the equilibria Zeq(α) without any reference to transition rates. Con-
sequently there arises the question whether we will have condition (14) also in
nonequilibrium. A study of these issues will be the subject of the next sections.

2.4.1. The Second Law of Thermodynamics for Processes at
Constant Temperature and Constant External Pressure

We first consider the system which is shown on the left hand side of Fig. 3
on page 10. The following theory is also valid for the setting shown on the right
hand side of Fig. 3, where liquid droplets evolve in a solid GaAs matrix which is
in contact with an inert gas.

Let us apply now the basic laws of thermodynamics to the control volume of
the cylinder/piston system, which is indicated in Fig. 3 by the dashed line.

The interior of the cylinder is denoted by B, which consists of a vapour
phase BV and a liquid phase BL = ⋃ν

α=1 Bα , which is decomposed into separated
liquid droplets of a given distribution. Bα indicates the union of droplets with α

molecules.
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Fig. 3. Many-droplet systems.

We study exclusively processes at constant outer pressure p0 and constant
outer temperature T0. Furthermore we assume that the temperature T within B is
constant with T = T0.

The global balance laws of total energy E and entropy S to the system B
reads

d E

dt
= Q̇ +

∮
∂ B

σ i jυ j dai , and
d S

dt
≥ Q̇

T0
. (15)

The quantity Q̇ denotes the heat power, that may flow in or out so that a constant
temperature T0 is guaranteed. The surface integral gives the mechanical power
due to stresses σ i j acting on the external boundary ∂ B of B that moves with the
velocity υ j .

The equality sign in (15)2 holds in equilibrium, whereas in non-equilibrium,
the growth of entropy is greater than the ratio of supplied heat and temperature.
This statement expresses Clausius version of the second law of thermodynamics.(6)

According to our assumption, there is a constant outer pressure p0 acting
on ∂ B. Note that only the piston may move. In this case the mechanical power
reduces to ∮

∂ B

σ i jυ j dai = −p0
dV

dt
. (16)

Elimination of the heat power in (15)2 by means of (15)1 leads to the thermody-
namic inequality

dA
dt

≤ 0, with the definition A = E − T0S + p0V . (17)

The newly defined quantity A is called the available free energy or availability.
We conclude that for arbitrary thermodynamic processes that run at constant outer
pressure, constant temperature and constant total mass, the availability must always
decrease and assumes its minimum in thermodynamic equilibrium.

The total energy E is given by the sum of internal energy, U , and kinetic
energy, K : E = U + K . The combination � = U − T0S. gives the free energy.
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In the following we will neglect the kinetic energy, so that we may write the
availability as A = � + p0V .

The thermodynamic inequality can now be written

dA
dt

= d

dt
(� + p0V ) ≤ 0. (18)

Recall that the inequality is valid for arbitrary thermodynamic processes in B,
that are, however, subjected to (i) constant temperature in B, (ii) constant outer
pressure on ∂ B, and (iii) constant number of molecules in B.

2.4.2. The Available Free Energy for a Many Droplet System

We denote the available free energy of a system that contains only a single
droplet with α molecules byAα . Furthermore we introduce the conventionA1 = 0.
The explicit calculation of Aα will be postponed to Sec. 3.2, where we consider
two special cases: These concern a liquid/vapour system with liquid droplets in
a vapour phase. This represents the classical Becker/Döring application, and it is
revisited here for an illustration. The other example is a liquid/solid system with
liquid droplets in a crystalline solid, and this case represents the main focus of this
study.

For both cases we assume that the droplets have radii on the nanometer scale,
whereas their distances are between 1 and 2 µm.

Relying on this assumption we may present the available free energy of the
many droplet system by

A =
ν∑

α=1

Z (t, α)Aα + kT
ν∑

α=1

Z (t, α) ln

(
Z (t, α)

ND(t)

)
with ND(t) =

ν∑
α=1

Z (t, α).

(19)
The function ND(t) gives at any time t the total number of droplets including the
monomers.

The first contribution to the available free energy of the many droplet system
is the sum of the free energies of single droplet systems, thus ignoring energetic
interactions between the droplets because they are assumed far apart from each
other. The second contribution in (19) takes care of the entropy of mixing of a
system consisting of ν chemically different species.

Note that it is due to the entropic contribution, that a system which has initially
only monomers can produce droplets with α > 1 under certain circumstances.

The representation (19) provides a basis for the further development of the
theory. A more detailed motivation of (19) for the two mentioned special cases
will be given in Sec. 3.3.
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2.4.3. Equilibrium of a Many Droplet System

The existence of equilibria of a many droplet system is a nontrivial and
subtle problem. The discussion of the current section relies on the assumption that
equilibria exist. Its justification or falsification will be discussed in Sec. 4.

According to the thermodynamic inequality (18), the available free energy as-
sumes a minimum, Aeq, in equilibrium that is approached at constant temperature,
constant external pressure and constant number of molecules, thus

Aeq = Min! under the side condition N =
ν∑

α=1

αZ (t, α). (20)

The extrema of the problem (20) may be written as

Zeq(α) = λα−1
eq Zeq(1) exp

(
−Aα

kT

)
with λeq = Zeq(1)

N eq
D

, (21)

where Zeq(1) and the parameter λeq ≤ 1 are determined as follows: At first we
calculate λeq from (19)2, which can be brought into the form

ν∑
α=1

λα
eq exp

(
−Aα

kT

)
= 1. (22)

Next we determine the equilibrium number of monomers, Zeq(1), from (20)2, i.e.

Zeq(1) = N∑ν
α=1 αλα−1

eq exp
(−Aα

kT

) . (23)

The evaluation of (22)2 and (23) needs information on the α dependence of the
available free energies Aα . With this information a detailed discussion of possible
solutions of (22) becomes possible. We postpone this discussion to Sec. 4.1, where
we consider two explicit cases.

2.4.4. The Approach of a Many Droplet System to Equilibrium

In this section we study the evolution of a many droplet system to equilibrium
according to the BD model. To this end we rewrite the available free energy (19)1

to obtain

A = kT
ν∑

α=1

Z (t, α) ln

(
Z (t, α)

qα ND(t)

)
with qα = exp

(
−Aα

kT

)
. (24)
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Next we calculate the time derivative of (24). We find

dA
dt

= kT
ν∑

α=1

∂ Z (t, α)

∂t
ln

(
Z (t, α)

qα ND(t)

)
+ kT

ν∑
α=1

Z (t, α)
∂

∂t

(
ln

(
Z (t, α)

qα ND(t)

))
.

(25)
Note that the second term in (25) vanishes identically. The time derivative of the
first term will now be eliminated by the BD system (3)2 for α ≥ 2, and by the
conservation law (5) for α = 1. After some simple rearrangements of the resulting
expression, we obtain

dA
dt

= kT
ν−1∑
α=1

Jα log

(
Z (t, α + 1)

Z (t, α)

ND(t)qα

Z (t, 1)qα+1

)
, or with (3)1,

= kT
ν−1∑
α=1

(
�C

α Z (t, α) − �E
α+1 Z (t, α + 1)

)

× ln

(
Z (t, α + 1)

Z (t, α)

ND(t)qα

Z (t, 1)qα+1

)
(26)

The second law of thermodynamics requires dA/dt ≤ 0. Thus we conclude that

ND(t)qα

Z (t, 1)qα+1
= �E

α+1

�C
α

(27)

is a sufficient condition to guarantee that A cannot increase during a process of a
many droplet system at constant temperature and constant external pressure.

Note that the expression (x − y) ln (y/x) is always smaller than zero if x �= y
and equal to zero only if x = y.

We consider (27) as a constitutive law for the determination of the ratio of
transition rates �E

α+1 and �C
α , that is compatible with the second law of thermo-

dynamics. In equilibrium the condition (27) reduces by means of (21) and (23) to
the condition (14), which was already given by Frenkel.(14,15) In non-equilibrium
only (27) is in accordance with the second law.

If we utilise now, for example, the expression (12) as a second constitutive
law for the determination of the condensation rate �C

α , both transition rates are
explicitly known, and we end up with a closed BD system, which is non-linear,
because the evaporation rates �E

α+1 depend on the distribution functions Z (t, α)
according to (27). We call this case the evolution of droplets by kinetic controlled
transition rates, because �C

α results from the kinetic theory of gases.
There is another interesting case, that leads to so called diffusion controlled

transition rates, where the quasi-stationary diffusion problem of a single droplet is
used to calculate the difference �C

α − �E
α . In fact, the evolution of a single droplet
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with α molecules and radius rα may be described by the natural ansatz

dα

dt
= �C

α − �E
α . (28)

There are several examples in the literature, e.g. see refs. 25 and 38, where dα/dt ,
which is proportional to drα/dt , is calculated as a function of α by solving a Stefan
problem, giving �C

α − �E
α as a function of α. We summarise the main results of

this section:
We have evaluated the available free energy A of a many droplet system.

From a purely thermodynamic point of view, we have determined the distribution
function Zeq(α) for equilibrium, which corresponds to the minimum of the avail-
able free energy. In a second step we have calculated the time derivative of A,
and by means of the BD system we have found (27) as a sufficient condition that
guarantees dA/dt ≤ 0. In mathematical terms: We have identified a Lyapunov
function, viz. A, of the BD system.

2.4.5. The Lyapunov Function of the BD System as Proposed
by J. M. Ball, J. Carr and O. Penrose

We compare now an important study of the dynamics of the BD system by
J. M. Ball, J. Carr and O. Penrose (BCP),(1,27,28) with the results of the last section.
Our discussion will rely on the BCP version (9) and (10), where the distribution
function is a volume density, c(t, α) instead of the number density Z (t, α)/N . Our
criticism of this approach from Sec. 2.3, page 62, is not important for a moment.
Furthermore we mention that Ball, Carr and Penrose consider exclusively the
limiting case ν → ∞.

At first, Ball, Carr and Penrose represent the equilibria of (9) and (10), i.e.
the solution of jα = aαceq(1)ceq(α) − bα+1ceq(α + 1) = 0 by writing

ceq(α) = Qα(ceq(1))α with the definition Qα+1 = aα

bα+1
Qα, Q1 = 1.

(29)
Next they define the Lyapunov function

L(t) =
∞∑

α=1

c(t, α)

(
ln

(
c(t, α)

Qα

)
− 1

)
, (30)

and conclude by means of the BD system (9), (10) and the ansatz (11) that

d L(t)

dt
≤ 0. (31)
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We compare now the available free energy (24) with the Lyapunov function (30)
of the BCP approach. To this end we slightly rewrite both representations:

A(t) = kT
∞∑

α=1

Z (t, α) ln

(
Z (t, α)

qα ND(t)

)
, L(t) =

∞∑
α=1

c(t, α) ln

(
c(t, α)

e Qα

)
. (32)

Both quantities are Lyapunov functions of the BD system. The important difference
between both functions is that the denominator of the logarithmus naturalis of
the L-function, viz. e Qα is independent of time, whereas the corresponding
denominator of the thermodynamically founded available free energy A, depends
via the distribution function on time. A further difference of the two approaches
concerns the possible equilibria. These can be written according to (21) and (29)
for the current approach and the BCP approach, respectively,

Zeq(α) = qα

(
N eq

D

)1−α
(Zeq(1))α, ceq(α) = Qα(ceq(1))α. (33)

The BCP approach (33)2 gives the equilibria in an easy manner in terms of the
number of monomers to the power α, whereas the current approach (33)1 gives
different equilibria, and these cannot be determined in the same simple manner,
because the distributions also appear on the right hand side of (33)1. Moreover the
equilibria (33)1 result from the minimization of the thermodynamically founded
available free energy and, in contrast to (33)2, no information on the transition
rates is need. Thus, if the equilibria (33)1 exist, only these are physically relevant.

For these reasons we prefer to identify the available free energy (32)1 with
the Lyapunov function of the Becker-Döring system, because it relies on the well
established model from chemical thermodynamics, see refs. 14 and 15. Finally
recall that this approach allows only transition rates that satisfy the condition (27).
A mathematical comparison of the current model to the BCP model is carried
out.(17)

3. THE AVAILABLE FREE ENERGIES FOR SPECIAL CASES

The BD model will now be further exploited for two special cases. The first
case regards a system that contains a single substance, where liquid droplets of a
pure substance nucleate and evolve in a vapour phase. This is Becker and Döring’s
classical example, which will be revisited here in order to explain the strategy
in detail. Furthermore, it serves as a comparison with a much more complicated
and subtle example, where we consider a modern application of the BD model to
semi-insulating GaAs. At elevated temperatures, unwanted liquid droplets appear
and evolve in a solid matrix. Here the concurrent processes are strongly affected
by mechanical bulk stresses, which arise because the liquid phase has a lower mass
density than the solid phase.
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Fig. 4. Single droplet systems. Color online.

3.1. Single Droplet Systems

The evaluation of the available free energy (24) for a many droplet system
needs a preliminary calculation of the available free energy for a single droplet
system. This is the subject of the next section. To this end we consider the two
systems, which are shown in Fig. 4.

The pressure vessel on the left contains vapour, which is in contact with a
single liquid droplet. The system on the right hand side contains a single liquid
droplet within a crystalline solid, which is surrounded by an inert gas.

3.2. Available Free Energy for Single Droplet Systems

3.2.1. A Liquid Droplet Within Vapour

We choose the gaseous and liquid phases of water as an example to describe
the evolution of liquid droplets in a gas. The vapour should behave like an ideal gas,
and in comparison to this, we assume the liquid to be incompressible. Furthermore
we assume that the liquid ought to exist within the vapour phase in the form of
spherical droplets at rest.

As already stated, we consider processes at constant temperature T and
constant outer pressure p0. The variables are (i) the volume VV of the gaseous
phase, (ii) the volume VL of the liquid phase and (iii) the number α of molecules
in the liquid phase. The number of vapour molecules is N − α, where N denotes
the fixed total number of molecules in the system.

We exploit the available free energy A = � + p0V , and we write first

A = �V + �L + �I + p0(VV + VL), (34)

in order to indicate the three contributions to the free energy that describe vapour,
liquid and the interface.

The free energies for vapour and liquid are given by their general constitutive
laws

�V = m(N − α) ψV

(
T,

VV

m(N − α)

)
and �L = m α ψL

(
T,

VL

mα

)
. (35)



Theory of Nucleation of Liquid Droplets in Solids 71

The functions ψV and ψL are the specific free energies of vapour and liquid,
respectively, and m denotes the atomic mass.

The interfacial free energy is proportional to the surface of the interface:

�I = σ OI = 4πσ r2
α. (36)

The temperature dependent quantity σ is called surface tension.
The derivatives of the available free energy A(T, VV, VL, α) with respect to

the volumes yield

∂A
∂VV

= −pV + p0,
∂A
∂VL

= −pL + 2σ

rα

+ p0. (37)

Recall that the pressure is the derivative of the specific free energy with respect to
the specific volume: p = −∂ψ(T, v)/∂v, See 23. Thus pV and pL are the pressures
of the gaseous and the liquid phase, respectively.

The necessary conditions for mechanical equilibrium are given by ∂A/∂VV =
0 and ∂A/∂VL = 0, implying

pV = p0 and pL − pV = 2σ

rα

. (38)

The condition (38)2 has at first been derived by Laplace and is called Laplace
law. We will assume that mechanical equilibrium is much faster established than
phase equilibrium, so that the conditions (38) are satisfied during the process of
an evolving droplet. Consequently, the available free energy becomes a function
of the single variable α.

Next we introduce the Gibbs free energies GV = �V + pV VV and GL =
�L + pL VL and obtain by means of (35), (36)

A = GV + GL + 1

3
σ OI. (39)

We introduce the specific Gibbs free energy of vapour and liquid as func-
tions of temperature and pressure by GV = m(N − α)gV(T, pV) and GL =
mαgL(T, pL) = mαgL(T, p0 + 2σ/rα). In the liquid we have the relations
4π/3r3

α ρL = mα. Due to the assumption that the liquid is incompressible, its
mass density ρL is a constant. We thus obtain A as a function of the parameters T
and p0 and of the variable α:

A(T, p0; α) = m NgV(T, p0) + mα

(
gL

(
T, p0 + 2σ

rα

)
− gV(T, p0)

)

+ 1

3
4πσ r2

α. (40)
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The further evaluation of (40) requires a simplification of the difference of Gibbs
free energies. To this end we first expand

gL

(
T, p0 + 2σ

rα

)
= gL (T, p0) + ∂gL

∂p0

2σ

rα

+ 1

2

∂2gL

∂p2
0

(
2σ

rα

)2

+ · · · (41)

According to classical thermodynamics we have ∂gL/∂p = 1/ρL, and due to the
incompressibility of the liquid, i.e. ∂ρL/∂p = 0, all terms of the expansion except
the first two vanish. Thus we obtain

gL

(
T, p0 + 2σ

rα

)
− gV(T, p0) = gL(T, p0) − gV(T, p0) + 1

ρL

2σ

rα

. (42)

The sign of the difference gL(T, p0) − gV(T, p0) is essential for the behaviour of
the liquid/vapour system. Its determination is a simple matter due to the assumption
that the vapour behaves like an ideal gas. In this case

gV(T, p0) = gV
(
T, p̄(T )

) + kT

m
ln

(
p0

p̄(T )

)
. (43)

The quantity k > 0 is Boltzmann’s constant, and the reference pressure p̄(T ) is
defined as a solution of the equation gL(T, p̄) − gV(T, p̄) = 0, which can be read
off from tables, e.g. for water.

Next we apply the incompressibility condition, that was already used to obtain
(42), to gL(T, p0) = gL(T, p̄ + p0 − p̄). Similarly we obtain

gL(T, p0) = gL(T, p̄(T )) + 1

ρL
(p0 − p̄(T )), (44)

so that we may write

gL(T, p0) − gV(T, p0) = p̄(T )

ρL

(
p0

p̄(T )
− 1

)
− kT

m
ln

(
p0

p̄(T )

)
. (45)

The first contribution in (45) can be neglected, because p̄(T )/ρL 	 kT/m =
p0/ρV. Recall that the specific volume of the gas is by a factor of 1000 larger than
the specific volume of the liquid.

Finally we introduce the positive constant γ = 4πσ (3/4π )2/3(m/ρL)2/3 and
obtain finally an explicit representation of the available free energy for vapour
containing a single liquid droplet at rest:

A(T, p0; α) = m N0gV(T, p0) − kT ln

(
p0

p̄(T )

)
α + γα2/3. (46)

If p0 < p̄(T ), the free energy A(T, p0; α) assumes its minimum exclusively at
α = 0, so that only the vapour phase survives in equilibrium. The Fig. 5 illustrates
the behaviour of A(T, p0; α) for p0 > p̄(T ). There are two minima at α = 0 and
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Fig. 5. Available free energy for vapour containing a single liquid droplet.

α → ∞. These are separated by a maximum at α = αC, which is determined by

αC =

 2γ

3kT ln
(

p0

p̄(T )

)



3

. (47)

This is the classical Thomson (Lord Kelvin)(33) formula for the critical droplet
number as a function of the vapour pressure, which is here controlled by the
external pressure p0. This formula serves as the basic law in the classical nucleation
theory, because it may be interpreted as follows: If a droplet with α atoms occurs
by fluctuation, it will further grow for α > αC, whereas it will disappear again for
α > αC.

Recall that our treatment concerns processes with fixed external pressure,
which implies for a single substance, that there is no equilibrium for finite droplet
size. If the volume of the container were fixed, we may find even for a single
substance a stable droplet at finite size.

3.2.2. A Liquid Droplet Within a Crystalline Matrix

Our second example regards the evolution of liquid droplets in semi-
insulating Gallium Arsenide (GaAs). Its constitution is described in detail in
ref. 7.

We consider the liquid as a compressible binary mixture with the constituents
arsenic (As) and gallium (Ga). Furthermore we assume that the liquid behaves
like a so called real mixture, so that the chemical part of the free energy contains
entropic and energetic contributions.
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The crystal of the solid phase consists of three face centered cubic sublattices
with a common lattice constant. The sublattices are denoted by α, β and γ , and
they are occupied by Ga, As and vacancies (V). Do not confuse the index of the
sublattice α with the number of atoms in the liquid phase. The Ga atoms only live
on sublattice α, where they are the dominant constituent, whereas As and V are
the dominant constituents on sublattices β and γ , respectively.

The constitutive laws will be given for an ideal mixture, so that the chemical
part of the free energy contains only entropic contributions. From a mechanical
point of view, the solid is a thermo-elastic body. The cubic anisotropy of GaAs
is small, see refs. 10 and 11, and will be ignored in this study. In particular we
assume that the liquid droplets have spherical shape. Thus their size is equivalently
described by their radii or by the number of atoms. The distances between droplets
are assumed to be much larger than their radii. Consequently there result stress
components in the solid that exclusively depend on the radius r , which originates
in the droplet center.

The concurrent thermodynamic processes are due to (i) chemical reactions,
which determine the transfer of constituents between the sublattices of the solid,
(ii) diffusional processes within the sublattices and in the liquid, (iii) interfacial
processes, which determine the motion of the interfaces, and (iv) mechanical
processes, which determine the stress components in the solid, σ i j , the pressure
in the liquid, pL, and the total mole densities of solid, nS, and liquid, nL.

As before we assume that mechanical equilibrium is immediately established.
Due to the high temperature range we are considering, it is reasonable to assume
furthermore that chemical and diffusional equilibria in the bulk are likewise es-
tablished, so that the dynamics is driven exclusively by the motion of the interface.

The evaluation of the equations of quasi-static mechanical equilibrium has
been carried out in detail in refs. 7 and 9. A misfitting spherical liquid droplet
generates a homogeneous pressure pL in the liquid and stresses that have radial
symmetry in the solid surrounding of the droplet:

σ rr = −pR + 3KS(a − h∗) − 4GSbα

(rα

r

)3
,

σ ϑϑ = σϕϕ = −pR + 3KS(a − h∗) + 2GSbα

(rα

r

)3
, (48)

and σ i j = 0 for i �= j . KS and GS denote the bulk and the shear modulus, respec-
tively, and pR is the reference pressure. The quantity h∗ local mistfit strain due the
local change of the concentration with respect to the reference reference concen-
tration. a and bα are the integration constants of the mechanical boundary problem.
Due to limr→∞ σ rr = −p0, we have a = (pR − p0)/3KS + h∗. The other integra-
tion constant bα depends on the interfacial radius rα and on the composition of
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solid and liquid. bα is determined by Laplace’s law. It reads

pL + σ rr
rα

= 2σ

rα

, which can be written as pL − pS = 2σ

rα

− σ 〈rr〉
rα

. (49)

Here pS = −σ i i/3 is the solid pressure, and σ
〈i j〉
rα

denotes the traceless part of the
stress at r = rα .

The calculation of the available free energy for the liquid/solid system starts
from the decomposition

A = �S + �L + �I + p0(VS + VL). (50)

�S and VS denote the free energy and the volume, respectively, of the solid phase.
Recall that the solid is in contact with an inert gas, whereby we only indicate
that the solid is subjected to an external hydrostatic pressure. The gas does not
contribute to changes of A. The important case that the gas can cross the solid/gas
interface is treated in ref. 9 and in a forthcoming paper.(8)

As before, we introduce the Gibbs free energies GS = �S + pSVS and GL =
�L + pLVL of the solid and the liquid, respectively, and obtain by means of (49)

A = GS + GL + 1

3
σ Oα + σ 〈rr〉

rα
VL. (51)

The appearance of the radial component of the deviatoric stress exhibit an apparent
difference to the corresponding representation (39) for the liquid/vapour system.
However, note that stresses appear now even implicitly in GS.

We denote the mean atomic masses of the liquid and the solid by mL
α and mS

α .
The index α indicates a droplet with α liquid atoms, whose surrounding contains
N0 − α solid atoms. The available free energy can thus be written as

A = (N0 − α)mS
αgS

α + αmL
αgL

α + ωI
α with ωI

α = 4π

3
σr2

α + σ 〈rr〉
rα

4π

3
r3
α (52)

where gL
α and gS

α denote the specific Gibbs free energies.
For later use it is convenient to introduce the Gibbs free energy GS

0 = N0

mS
0 gS

0 , which corresponds to a pure solid with N0 atoms of mean atomic mass mS
0,

which is subjected to a hydrostatic pressure p0. We rewrite (52) as

A = N0mS
0 gS

0 + N0
(
mS

αgS
α − mS

0 gS
0

) + α
(
mL

αgL
α − mS

αgS
α

) + ωI
α. (53)

The reduction of the available free energy (53) to a function of a single variable,
viz. the total number α of atoms in the droplet, is much more involved than in the
former case, and for the subtle details, we refer the reader to ref. 7. The reduction
to a single variable relies on the assumption from above, whereby mechanical,
chemical and diffusional equilibrium are already established, so that the approach
of the system to phase equilibrium is the only thermodynamic process that drives
the evolution.
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Finally we end up with a function A(T, p0, N0, X0; α), whose dependence
on α, however, is not explicit, because the elimination of the other variables relies
on a transcendental algebraic system, see ref. 7. A typical graph of that function
is depicted in Fig. 6.

There are important differences with respect to the former case of a single
substance that consists of a liquid droplet in vapour. (i) The dependence of A on
the total number of atoms in the system, N0, and on the mean arsenic concentration
of the solid X0, is nontrivial. Their values have, in contrast to the former case,
a significant influence on the evolution of the droplet. (ii) Accordingly to the
former case, a critical αC may exist, where A assumes a maximum. However, in
contrast to the the former case, the maximum is followed by a minimum at αE

with αC < αE < ∞. In other words: Stable droplets of finite size may appear in
the solid phase.

In the liquid/vapour system, large droplets are energetically much more
favourable than smaller droplets in the regime, p0 > p̄(T ), because they have
a smaller surface energy than smaller droplets, and this is the only mechanism to
reduce the available free energy. In the liquid/solid case, the external pressure is
no important control parameter, however, there are two new phenomena: Large
droplets produce larger elastic energy than smaller droplets do, and the annihila-
tion of vacancies during the growth of a liquid droplet leads to a decrease of the
entropy. Both phenomena stabilize droplets of finite size.

3.3. Available Free Energy for Many Droplet Systems

In this section we derive the representation (19) of the available free energy
of many droplet systems, A.

3.3.1. The Liquid/Solid System

To this end we consider first the available free energy for the liquid/solid
case, because it is the more general case. Hereafter the liquid/vapour case will
follow as a simplification. Recall that we deal with situations where the distances
between droplets are much larger than their radii. This fact enables the following
reasoning:

We consider an ensemble of ν subsystems as it is illustrated in Fig. 7. Each
of them contains the same number of atoms, N0, has the same mean composition,
X0, and is under the same external pressure, p0. At time t , for 2 ≤ α ≤ ν there are
Z (t, α) subsystems with a single droplet containing α liquid atoms and (N0 − α)
solid atoms, and there are Z0(t) subsystems without droplets. The total number of
solid atoms will be denoted by Z (t, 1), so that we may write

Z (t, 1) = N0 Z0(t) +
ν∑

α=2

(N0 − α)Z (t, α). (54)
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Let us now denote the total number of liquid and solid atoms, which is fixed, by
N . Thus we have the identity

N0 Z0(t) = N −
ν∑

α=2

αZ (t, α) −
ν∑

α=2

(N0 − α)Z (t, α). (55)

Next we decompose the Gibbs free energies. For 2 ≤ α ≤ ν, we denote the mean
masses of the liquid and solid atoms of subsystems by mL

α , mS
α . The index α

indicates that the subsystem contains a droplet with α liquid and N0 − α solid
atoms. mS

0 is the mean atomic mass of the pure solid subsystems. The Gibbs free
energies can then be written as

GL =
ν∑

α=2

Z (t, α) α mL
α gL

α and (56)

GS = Z0(t)N0 mS
0 gS

0 +
ν∑

α=2

Z (t, α) (N0 − α) mS
α gS

α,

where gL
α and gS

α denote the specific Gibbs free energies.
Furthermore we denote the sum of surface free energies and bulk stresses by

�I, see (51), and write

�I =
ν∑

α=1

Z (t, α)ωI
α with ωI

α =



0 α = 1
for

4π
3 σr2

α + σ
〈rr〉
rα

4π
3 r3

α α ≥ 2
. (57)

We have set ωI
1 = 0, because it refers to to a pure solid under hydrostatic pressure

p0. Furthermore, surface tension appears by definition exclusively for α ≥ 2.
GS, GL and �I contribute additively to the available free energy A of the total

ensemble. However, there is an additional contribution, which arises because there
are ν different constituents in the ensemble: solid atoms and droplets with ν − 1
different sizes. We consider the processes between these constituents as chemical
reactions, and consequently, according to chemical thermodynamics there is the
mixing entropy, see refs. 14, 15, 24,

Smix = −k
ν∑

α=1

Z (t, α) ln

(
Z (t, α)

ND

)
, (58)

which likewise contributes additively to A by −T Smix.
The available free energy of a many droplet system consisting of liquid

droplets in a crystalline solid is thus represented by

A = GS + GL + �I − T Smix. (59)
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A representation that reveals the dependence of A on the distribution functions
Z (t, α), results by virtue of (55)/ (58):

A = NmS
0 gS

0 +
ν∑

α=1

Z (t, α)

(
Aα + kT ln

(
Z (t, α)

ND(t)

))
. (60)

The newly introduced quantity

Aα = N0
(
mS

αgS
α − mS

0 gS
0

) + α
(
mL

αgL
α − mS

αgS
α

) + ωI
α with A1 = 0 (61)

may be now identified, up to a constant,with the available free energy (53) of
a single droplet system. Note that α = 1 indicates the ensemble members that
contain no droplet at all. We thus set mS

1 gS
1 = mS

0 gS
0 , mL

1 gL
1 = mS

1 gS
1 and ωI

1 = 0.

3.3.2. The Liquid/Vapour System

The available free energy for a many droplet system consisting of liquid
droplets in a gas can be read of from the representation (60) and (61) by changing
the subscript S that refers to the solid to a subscript V which indicates the vapour.

Furthermore, there are three simplifications: (i) the liquid/vapour case deals
with a single substance, so that the mean atomic masses in (61) become indepen-
dent of the number of molecules in the droplet, and furthermore mL = mV = m,
(ii) the specific Gibbs free energies of the vapour do not depend on how many
molecules are contained in the droplet, so that the first term in (61) does not appear.
(iii) there are no deviatoric stresses in ωI

α .
Thus, up to a constant, the available free energy for a many droplet system

reads

A =
ν∑

α=1

Z (t, α)

(
Aα + kT ln

(
Z (t, α)

ND(t)

))
, (62)

where Aα is now defined by

A1 = 0, and Aα = −kT ln

(
p0

p̄(T )

)
α + γα2/3 for α ≥ 2. (63)

4. DETERMINATION OF EQUILIBRIA

The objective of this chapter is the determination of possible equilibria ac-
cording to the Eqs. (21), (22) and (23) for the two considered many droplet systems.
An important aspect will be a study on the influence of the arbitrary restriction, that
there is largest droplet with ν atoms or molecules. In particular, we will consider
the limiting case ν → ∞
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Fig. 6. Available free energy for solid GaAs containing a single arsenic-rich liquid droplet.

4.1. The ν Dependence of λeq = Zeq(1)/Neq
D

The dependence of the equilibrium distribution Zeq(α) on the number ν of
atoms or molecules in the largest droplet, results from the ν dependence of the
parameter λeq, which solves the Eq. (22):

ν∑
α=1

λα
eq exp

(
−Aα

kT

)
= 1. (64)

Recall that by definition λeq satisfies 0 < λeq ≤ 1. Let us denote, for a given list of
increasing ν, the sequence of the solutions to (64) by λν . The result of a numerical
calculation of the sequence is shown in Fig. 8 for the liquid/vapour system and in
Fig. 9 for the liquid/solid system.

Fig. 7. Ensemble of single droplet systems.
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Fig. 8. The liquid/vapour system (H2O).

In the liquid/vapour system, λν remains near to 1 for small and moderate
values of ν. This is in contrast to the liquid/solid system, where λν decreases
rapidly for values of ν in the range of the critical droplet and it converges to 0.8
for further increasing ν. The liquid/vapour system exhibits a further difference to
the liquid/solid system for large ν: A limiting value, which turns out as p̄(T )/p0

according to the following discussion, will never be achieved.
These differences between the two systems result from the different properties

of their available free energiesAα . The liquid/vapour system, see Fig. 5, has a single
droplet available free energy Aα , that is unbounded from below for increasing α,
whereas the corresponding available free energy of the liquid/solid system, see
Fig. 6, exhibits a local minimum on the right hand side of the nucleation barrier
and grows with further increasing α.

Fig. 9. The liquid/solid system (GaAs).
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Regarding the liquid/solid system we conclude that λν becomes independent
of ν for sufficient large ν. Thus a ν independent equilibrium distribution Zeq(α)
exists, see Fig. 11 in the next Section.

Next we study the behaviour of λν for the liquid/vapour system. Note at first
that its available free energy Aα , see (63), depends on the saturation parameter
s = p0/ p̄(T ). The undersaturated case s < 1 is simple, it leads immediately to a
convergent series (64), which thus becomes independent of ν for sufficiently large
ν. However, the supersaturated case s > 1 requires a detailed discussion. To this
end we define the function

Fν(s; λ) =
ν∑

α=1

λα exp

(
−Aα

kT

)
, (65)

which can be written by virtue of (63) and with the positive constant a = γ /kT
as

Fν(s; λ) = λ +
ν∑

α=2

(λs)α exp(−aα2/3). (66)

In the following we list the properties of Fν(s; λ).

1. The radius of convergence of the series

S(λs) =
∞∑

α=2

(λs)α exp(−aα2/3) (67)

is given by λs = 1. Moreover, the series converges also for λs = 1, be-
cause

S(1) ≤
∫ ∞

1
exp(−aα2/3)dα = 3

2a

(
exp (−a) +

√
π

4a
(1 − erf(

√
a))

)
.

(68)
2. We denote the sum S(1) by ε. For a = 9.2223, which is a typical value for

water at T = 275.2K, we obtain ε = 4.43431 × ·10−7.
3. lim

ν→∞ Fν(s; λ) is estimated according to

Fν(s; λ) < lim
ν→∞ Fν(s; λ) ≤ lim

ν→∞ Fν(s; 1/s) = 1/s + ε. (69)

Note that the right hand side of the inequality is independent of λ.
4. For fixed s > 1/(1 − ε) and each finite ν, the sequence of equations

Fν(s; λ) = 1. (70)

implies a sequence of solutions λν whose members have the properties

0 < λν ≤ 1 and λνs > 1. (71)
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Consequently, for finite ν and s > 1/(1 − ε), these solutions are outside
the radius of convergence of the series (67).

5. For ν → ∞, λνs tends slowly to 1 from above. However, due to
Fν(s; λν) > Fν+1(s; λν+1) > 1 for each finite ν, this limiting value cannot
be reached.

6. We conclude that in the limit ν → ∞, the equations Fν(s; λ) = 1 can only
be solved, if the fixed but free parameter s is restricted by s ≤ 1/(1 − ε).
However, there is no physical reason to restrict the parameter s in this way.
For example, Becker and Döring have 4 < s < 6 in their devices.

In summary the final conclusion is stated as follows: For s > 1/(1 − ε) there
is no solution of (64) in the limiting case ν → ∞. For finite ν, a unique solution of
(64) exists. However, due to the arbitrarily choice of a largest droplet, it generates
an artificial ν dependence of the resulting equilibrium distribution Zeq(α). The
physical reason of the phenomenon is the simplicity of the liquid/vapour system
containing a single substance. The only possibility to reduce its available free
energy is given by the reduction of the interfacial free energy, which drives a system
with vapour and liquid droplets finally into a pure liquid phase, so that there is no
coexistence of vapour and a droplet distribution with various sizes in equilibrium.

Let us point out once more the differences of the liquid/vapour system to the
liquid/solid system containing semi-insulating GaAs. This liquid/solid system has
a single droplet free energy with a local minimum at finite droplet size. The very
large droplets are prevented here due to two mechanisms that are absent in the
former case: The appearance of large droplets is accompanied by large deviatoric
stresses, which lead to an increase of the energetic contribution to the available
free energy. Secondly, the entropic contribution decreases, because the growth
process of a liquid droplet in the GaAs solid is accompanied by annihilation of
vacancies at the liquid/solid interface.

Finally we proceed with a discussion on different conditions for the existence
of equilibria according to the current model and the BCP model, respectively.
Note that the discussion from above reveals that the total mass of the considered
system has no influence at all on the existence of equilibria in the current model.
In the BCP model the total mass is the crucial parameter. There exists a critical
mass in that model so that equilibria only exist if the total mass is below the
critical mass. On the other hand, if the total mass exceeds the critical mass, the
BCP model predicts the evolution of the excess mass for large times according to
the LSW model. The origin of this difference between the two models is found
to be in the fluxes. The condition (27) that the free energy of the current model
(19) is a Lyapunov function of the Becker-Döring system leads to the following
representation of the fluxes, viz.

Jα = �C
α

(
Z (t, α) − qα

qα+1

∑∞
α=1 Z (t, α)

Z (t, 1)
Z (t, α + 1)

)
. (72)
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We observe that the fluxes of the current model do not change if we multiply each
distribution Z (t, α) with a common positive factor, i.e. if we enlarge the mass of
the system. This is in contrast to the BCP model whose fluxes are homogeneous in
the distributions. A detailed discussion concerning the BCP model can be found
in refs. 17, 26 and 28 gives a comparison of the BCP model with the model of this
study.

4.2. Equilibrium Distributions

Finally we discuss the equilibrium size distributions of the droplets. These
are determined by the Eqs. (21)–(23).

We consider at first the liquid/vapour system. According to the results of our
study in Sec. 4.1, an equilibrium size distribution of droplets is only possible, if
we terminate the size ν < ∞ of the largest droplet, Fig. 10.

shows three distributions for ν = 25, 50, 75, 100, left hand side, and for
ν = 100, 800 on the right hand side. There is no convergence if we increase ν:
In the limiting case ν → ∞, the liquid/vapour system drives into a single liquid
phase.

The liquid/solid system reveals a different behaviour. Here the results do
not depend on ν for ν > αC = 25. Figure 11. shows size distributions for vari-
ous fixed ν, with αC < ν ≤ 5000. On the left hand side, the size distribution is
plotted in the range 1 ≤ α ≤ ν, and in 460 ≤ α ≤ 820 on the right hand side. A
ν dependence is not visible. We conclude that the limiting case ν → ∞ exists in
this case. An equilibrium with a size distribution of droplets is thus attainable.
Finally, the zoom on the right hand side of Fig. 11 reveals a further interest-
ing feature of the liquid/solid system: Besides the usual local minimum there
appears additionally a local maximum in the equilibrium size distribution of
droplets.

Fig. 10. The liquid/vapour system (H2O).
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Fig. 11. The liquid/solid system (GaAs).

5. SUMMARY AND OUTLOOK

In order to model the appearance of liquid droplets in solid GaAs, we have
revisited the classical Becker-Döring model as it is described in the literature.
Originally, the exclusive objective was the incorporation of deviatoric bulk stresses,
which arise during the liquid/solid phase transition, into the existing model.

However, we found that the Becker-Döring models in the existing literature
exhibit discrepancies with respect to thermodynamics. In particular, the possible
equilibria, if there are any, contradict the equilibria resulting from a purely ther-
modynamic point of view. The origin of this fact is due to the constitutive laws
that are used for the determination of the transition rates. Thus the formulation of
a Becker-Döring model which is consistent with the second law became the first
objective of this study.

The difference of our strategy to the literature and in particular to the BCP
model is as follows. At first we calculate the free energy of the multi-droplet
system according to the rules of chemical thermodynamics, see (19). Next we
pose the question, whether the thermodynamically based free energy is identical
to the Lyapunov function of the Becker-Döring model. We found a necessary
condition, see (27), which restricts the generality of the transition rates, so that
the question can be positively answered. In equilibrium, the same condition was
already found by Frenkel.

The existing literature and the BCP version of the Becker-Döring model
follows a different strategy. Here both transition rates are given by intuitive rea-
sonings relying for example on the diffusion problem and a Stefan condition at
the interface between droplet and surrounding. Hereafter the Lyapunov function
is read off from the resulting Becker-Döring model. Note that we have shown,
that only one of the two transition rates can be determined in this manner, because
their ration is restricted by thermodynamics.
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After this discussion we have applied the modified Becker-Döring model
with thermodynamically consistent transition rates to two explicit cases: These
are the classical liquid/vapour system for a pure substance, and the liquid/solid
system for semi-insulating GaAs. The main difference of the two systems regards
the available free energies for the corresponding single droplet systems.

Assuming that the processes in both systems are isothermal and pressure
controlled, we have studied the resulting equilibria. It turns out, that the liquid/solid
system may assume an equilibrium distribution of droplets of various sizes, which
is in contrast to the well known behaviour of the liquid/vapour system, which tends
to form a single liquid phase. Our next studies, which we have already started,
concern

(i) Experimental devices, which are volume controlled. In this case, even
the simple liquid/vapour system may assume an equilibrium with a
distribution of droplet sizes.

(ii) A study on the dynamics of the thermodynamic consistent BD model.
(iii) The formulation of a BD model for an open liquid/solid system (GaAs),

which is embedded in an arsenic gas atmosphere, so that the arsenic can
enter or leave the solid phase.
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3. R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen.
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Poggendorf’s Annalen XCIII:481 (1854), (also in: Phil. Mag. 4th Ser. Vol. XII:81; Journ. de
Liouville t. XX:63.

7. W. Dreyer and F. Duderstadt, On the modelling of semi-insulating GaAs including surface tension
and bulk stresses. WIAS-Preprint 995, (2004).

8. W. Dreyer and F. Duderstadt, On the dynamics of the thermodynamic consistent Becker-Döring
model. in preparation.

9. W. Dreyer, F. Duderstadt, and S. Qamar, Diffusion in the vicinity of an evolving spherical arsenic
droplet. WIAS-Preprint 996 (2004).

10. Dreyer, F. Duderstadt, St. Eichler, and M. Jurisch, Stress analysis and bending tests for GaAs
wafer. WIAS-Preprint 897 (2003).
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Chemie 125:236–242 (1927).

14. J. I. Frenkel,
Journal experimentalnoi i teoreticheskoi fisiki 9(8):952–962 (1939), also in Englisch: A general
theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phy. 7:538–547 (1939).

15. J. I. Frenkel, , Isgatelstwo akagemii nauk SSSR, Moscow (1945)
(second corrected and extended edition in English: Kinetic theory of liquids, Oxford University
Press, Oxford (1946), reprint: Dover, New York (1955); German translation of the first edition,
corrected and translated by H. Friedrich, W. Ludwig and F. R. Bachmann: Kinetische Theorie der
Flüssigkeiten, Deutscher Verlag der Wissenschaften, Berlin (1957)).

16. J. W. Gibbs, On the equilibrium of heterogeneous substances, Transactions of the Connecticut
Academy of Arts and Sciences, Third Series XVI(96):343–524 (1878).

17. M. Herrmann, B. Niethammer, and M. Naldzhieva, On a thermodynamically consistent modi-
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